25  Cycle GAN

import torch
import torch.nn as nn

25.1 Class ResNetBlock() & ResNetGenerator()

class ResNetBlock(nn.Module):

    def __init__(self, dim):
        super(ResNetBlock, self).__init__()
        self.conv_block = self.build_conv_block(dim)

    def build_conv_block(self, dim):
        conv_block = []

        conv_block += [nn.ReflectionPad2d(1)]

        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=0, bias=True),
                       nn.InstanceNorm2d(dim),
                       nn.ReLU(True)]

        conv_block += [nn.ReflectionPad2d(1)]

        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=0, bias=True),
                       nn.InstanceNorm2d(dim)]

        return nn.Sequential(*conv_block)

    def forward(self, x):
        out = x + self.conv_block(x)
        return out


class ResNetGenerator(nn.Module):

    def __init__(self, input_nc=3, output_nc=3, ngf=64, n_blocks=9):

        assert(n_blocks >= 0)
        super(ResNetGenerator, self).__init__()

        self.input_nc = input_nc
        self.output_nc = output_nc
        self.ngf = ngf

        model = [nn.ReflectionPad2d(3),
                 nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=True),
                 nn.InstanceNorm2d(ngf),
                 nn.ReLU(True)]

        n_downsampling = 2
        for i in range(n_downsampling):
            mult = 2**i
            model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3,
                                stride=2, padding=1, bias=True),
                      nn.InstanceNorm2d(ngf * mult * 2),
                      nn.ReLU(True)]

        mult = 2**n_downsampling
        for i in range(n_blocks):
            model += [ResNetBlock(ngf * mult)]

        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),
                                         kernel_size=3, stride=2,
                                         padding=1, output_padding=1,
                                         bias=True),
                      nn.InstanceNorm2d(int(ngf * mult / 2)),
                      nn.ReLU(True)]

        model += [nn.ReflectionPad2d(3)]
        model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
        model += [nn.Tanh()]

        self.model = nn.Sequential(*model)

    def forward(self, input):
        return self.model(input)

25.2 Instantiate

netG = ResNetGenerator()

25.2.1 Load Model

model_path = "../../data/torch/p1ch2/horse2zebra_0.4.0.pth"
model_data = torch.load(model_path)
netG.load_state_dict(model_data)
/var/folders/70/7wmmf6t55cb84bfx9g1c1k1m0000gn/T/ipykernel_97446/3790855958.py:2: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  model_data = torch.load(model_path)
<All keys matched successfully>

25.2.2 Set Eval Mode

netG.eval()
ResNetGenerator(
  (model): Sequential(
    (0): ReflectionPad2d((3, 3, 3, 3))
    (1): Conv2d(3, 64, kernel_size=(7, 7), stride=(1, 1))
    (2): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
    (3): ReLU(inplace=True)
    (4): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
    (5): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
    (8): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
    (9): ReLU(inplace=True)
    (10): ResNetBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (11): ResNetBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (12): ResNetBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (13): ResNetBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (14): ResNetBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (15): ResNetBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (16): ResNetBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (17): ResNetBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (18): ResNetBlock(
      (conv_block): Sequential(
        (0): ReflectionPad2d((1, 1, 1, 1))
        (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
        (3): ReLU(inplace=True)
        (4): ReflectionPad2d((1, 1, 1, 1))
        (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
        (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
      )
    )
    (19): ConvTranspose2d(256, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
    (20): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
    (21): ReLU(inplace=True)
    (22): ConvTranspose2d(128, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
    (23): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
    (24): ReLU(inplace=True)
    (25): ReflectionPad2d((3, 3, 3, 3))
    (26): Conv2d(64, 3, kernel_size=(7, 7), stride=(1, 1))
    (27): Tanh()
  )
)

25.2.3 Preprocess

from PIL import Image
from torchvision import transforms
preprocess = transforms.Compose([transforms.Resize(256),
                                 transforms.ToTensor()])
img = Image.open("../../data/torch/p1ch2/horse.jpg")
img

25.3 Execute !

img_t = preprocess(img)
batch_t = torch.unsqueeze(img_t, 0)
batch_out = netG(batch_t)

batch_out is now the output of the generator, which we can convert back to an image:

out_t = (batch_out.data.squeeze() + 1.0) / 2.0
out_img = transforms.ToPILImage()(out_t)
out_img.save('../../data/torch/p1ch2/zebra.jpg')
out_img