import pandas as pd
import numpy as np
18 Data School: My top 25 pandas tricks
18.1 Load example datasets
# drinks = pd.read_csv('http://bit.ly/drinksbycountry')
# movies = pd.read_csv('http://bit.ly/imdbratings')
# orders = pd.read_csv('http://bit.ly/chiporders', sep='\t')
# orders['item_price'] = orders.item_price.str.replace('$', '').astype('float')
# stocks = pd.read_csv('http://bit.ly/smallstocks', parse_dates=['Date'])
# titanic = pd.read_csv('http://bit.ly/kaggletrain')
# ufo = pd.read_csv('http://bit.ly/uforeports', parse_dates=['Time'])
= pd.read_pickle("../data/dataschool/drinks.pkl")
drinks = pd.read_pickle("../data/dataschool/movies.pkl")
movies = pd.read_pickle("../data/dataschool/orders.pkl")
orders = pd.read_pickle("../data/dataschool/stocks.pkl")
stocks = pd.read_pickle("../data/dataschool/titanic.pkl")
titanic = pd.read_pickle("../data/dataschool/ufo.pkl") ufo
18.2 Show installed versions
Sometimes you need to know the pandas version you’re using, especially when reading the pandas documentation. You can show the pandas version by typing:
pd.__version__
'0.24.2'
But if you also need to know the versions of pandas’ dependencies, you can use the show_versions()
function:
pd.show_versions()
INSTALLED VERSIONS
------------------
commit: None
python: 3.7.3.final.0
python-bits: 64
OS: Darwin
OS-release: 18.6.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.24.2
pytest: None
pip: 19.1.1
setuptools: 41.0.1
Cython: None
numpy: 1.16.4
scipy: None
pyarrow: None
xarray: None
IPython: 7.5.0
sphinx: None
patsy: None
dateutil: 2.8.0
pytz: 2019.1
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 3.1.0
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml.etree: None
bs4: None
html5lib: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.10.1
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None
You can see the versions of Python, pandas, NumPy, matplotlib, and more.
18.3 Create an example DataFrame
Let’s say that you want to demonstrate some pandas code. You need an example DataFrame to work with.
There are many ways to do this, but my favorite way is to pass a dictionary to the DataFrame constructor, in which the dictionary keys are the column names and the dictionary values are lists of column values:
= pd.DataFrame({'col one':[100, 200], 'col two':[300, 400]})
df df
col one | col two | |
---|---|---|
0 | 100 | 300 |
1 | 200 | 400 |
Now if you need a much larger DataFrame, the above method will require way too much typing. In that case, you can use NumPy’s random.rand()
function, tell it the number of rows and columns, and pass that to the DataFrame constructor:
2, 3) np.random.rand(
array([[0.69711742, 0.74397598, 0.35250779],
[0.36533264, 0.3887034 , 0.15179211]])
4, 8)) pd.DataFrame(np.random.rand(
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|---|
0 | 0.765050 | 0.672438 | 0.658516 | 0.515231 | 0.314563 | 0.759657 | 0.838804 | 0.154178 |
1 | 0.526786 | 0.258871 | 0.032577 | 0.635255 | 0.008315 | 0.827765 | 0.574318 | 0.781200 |
2 | 0.114055 | 0.795156 | 0.144248 | 0.161738 | 0.624836 | 0.223252 | 0.492255 | 0.274132 |
3 | 0.014080 | 0.097308 | 0.422632 | 0.098952 | 0.471007 | 0.307562 | 0.503040 | 0.317663 |
That’s pretty good, but if you also want non-numeric column names, you can coerce a string of letters to a list and then pass that list to the columns parameter:
4, 8), columns=list('abcdefgh')) pd.DataFrame(np.random.rand(
a | b | c | d | e | f | g | h | |
---|---|---|---|---|---|---|---|---|
0 | 0.929156 | 0.665603 | 0.934804 | 0.498339 | 0.598148 | 0.717280 | 0.304452 | 0.311813 |
1 | 0.308736 | 0.418361 | 0.758243 | 0.733521 | 0.145216 | 0.822932 | 0.369632 | 0.470175 |
2 | 0.964671 | 0.439196 | 0.377538 | 0.547604 | 0.138113 | 0.789990 | 0.615333 | 0.540587 |
3 | 0.108064 | 0.834134 | 0.367098 | 0.132073 | 0.608710 | 0.783628 | 0.347594 | 0.836521 |
As you might guess, your string will need to have the same number of characters as there are columns.
18.4 Rename columns
Let’s take a look at the example DataFrame we created in the last trick:
df
col one | col two | |
---|---|---|
0 | 100 | 300 |
1 | 200 | 400 |
I prefer to use dot notation to select pandas columns, but that won’t work since the column names have spaces. Let’s fix this.
The most flexible method for renaming columns is the rename()
method. You pass it a dictionary in which the keys are the old names and the values are the new names, and you also specify the axis:
= df.rename({'col one':'col_one', 'col two':'col_two'}, axis='columns') df
The best thing about this method is that you can use it to rename any number of columns, whether it be just one column or all columns.
Now if you’re going to rename all of the columns at once, a simpler method is just to overwrite the columns attribute of the DataFrame:
= ['col_one', 'col_two'] df.columns
Now if the only thing you’re doing is replacing spaces with underscores, an even better method is to use the str.replace()
method, since you don’t have to type out all of the column names:
= df.columns.str.replace(' ', '_') df.columns
All three of these methods have the same result, which is to rename the columns so that they don’t have any spaces:
df
col_one | col_two | |
---|---|---|
0 | 100 | 300 |
1 | 200 | 400 |
Finally, if you just need to add a prefix or suffix to all of your column names, you can use the add_prefix()
method…
'X_') df.add_prefix(
X_col_one | X_col_two | |
---|---|---|
0 | 100 | 300 |
1 | 200 | 400 |
…or the add_suffix()
method:
'_Y') df.add_suffix(
col_one_Y | col_two_Y | |
---|---|---|
0 | 100 | 300 |
1 | 200 | 400 |
18.5 Reverse row order
Let’s take a look at the drinks DataFrame:
drinks.head()
country | beer_servings | spirit_servings | wine_servings | total_litres_of_pure_alcohol | continent | |
---|---|---|---|---|---|---|
0 | Afghanistan | 0 | 0 | 0 | 0.0 | Asia |
1 | Albania | 89 | 132 | 54 | 4.9 | Europe |
2 | Algeria | 25 | 0 | 14 | 0.7 | Africa |
3 | Andorra | 245 | 138 | 312 | 12.4 | Europe |
4 | Angola | 217 | 57 | 45 | 5.9 | Africa |
This is a dataset of average alcohol consumption by country. What if you wanted to reverse the order of the rows?
The most straightforward method is to use the loc
accessor and pass it ::-1
, which is the same slicing notation used to reverse a Python list:
-1].head() drinks.loc[::
country | beer_servings | spirit_servings | wine_servings | total_litres_of_pure_alcohol | continent | |
---|---|---|---|---|---|---|
192 | Zimbabwe | 64 | 18 | 4 | 4.7 | Africa |
191 | Zambia | 32 | 19 | 4 | 2.5 | Africa |
190 | Yemen | 6 | 0 | 0 | 0.1 | Asia |
189 | Vietnam | 111 | 2 | 1 | 2.0 | Asia |
188 | Venezuela | 333 | 100 | 3 | 7.7 | South America |
What if you also wanted to reset the index so that it starts at zero?
You would use the reset_index()
method and tell it to drop the old index entirely:
-1].reset_index(drop=True).head() drinks.loc[::
country | beer_servings | spirit_servings | wine_servings | total_litres_of_pure_alcohol | continent | |
---|---|---|---|---|---|---|
0 | Zimbabwe | 64 | 18 | 4 | 4.7 | Africa |
1 | Zambia | 32 | 19 | 4 | 2.5 | Africa |
2 | Yemen | 6 | 0 | 0 | 0.1 | Asia |
3 | Vietnam | 111 | 2 | 1 | 2.0 | Asia |
4 | Venezuela | 333 | 100 | 3 | 7.7 | South America |
As you can see, the rows are in reverse order but the index has been reset to the default integer index.
18.6 Reverse column order
Similar to the previous trick, you can also use loc
to reverse the left-to-right order of your columns:
-1].head() drinks.loc[:, ::
continent | total_litres_of_pure_alcohol | wine_servings | spirit_servings | beer_servings | country | |
---|---|---|---|---|---|---|
0 | Asia | 0.0 | 0 | 0 | 0 | Afghanistan |
1 | Europe | 4.9 | 54 | 132 | 89 | Albania |
2 | Africa | 0.7 | 14 | 0 | 25 | Algeria |
3 | Europe | 12.4 | 312 | 138 | 245 | Andorra |
4 | Africa | 5.9 | 45 | 57 | 217 | Angola |
The colon before the comma means “select all rows”, and the ::-1
after the comma means “reverse the columns”, which is why “country” is now on the right side.
18.7 Select columns by data type
Here are the data types of the drinks DataFrame:
drinks.dtypes
country object
beer_servings int64
spirit_servings int64
wine_servings int64
total_litres_of_pure_alcohol float64
continent object
dtype: object
Let’s say you need to select only the numeric columns. You can use the select_dtypes()
method:
='number').head() drinks.select_dtypes(include
beer_servings | spirit_servings | wine_servings | total_litres_of_pure_alcohol | |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0.0 |
1 | 89 | 132 | 54 | 4.9 |
2 | 25 | 0 | 14 | 0.7 |
3 | 245 | 138 | 312 | 12.4 |
4 | 217 | 57 | 45 | 5.9 |
This includes both int and float columns.
You could also use this method to select just the object columns:
='object').head() drinks.select_dtypes(include
country | continent | |
---|---|---|
0 | Afghanistan | Asia |
1 | Albania | Europe |
2 | Algeria | Africa |
3 | Andorra | Europe |
4 | Angola | Africa |
You can tell it to include multiple data types by passing a list:
=['number', 'object', 'category', 'datetime']).head() drinks.select_dtypes(include
country | beer_servings | spirit_servings | wine_servings | total_litres_of_pure_alcohol | continent | |
---|---|---|---|---|---|---|
0 | Afghanistan | 0 | 0 | 0 | 0.0 | Asia |
1 | Albania | 89 | 132 | 54 | 4.9 | Europe |
2 | Algeria | 25 | 0 | 14 | 0.7 | Africa |
3 | Andorra | 245 | 138 | 312 | 12.4 | Europe |
4 | Angola | 217 | 57 | 45 | 5.9 | Africa |
You can also tell it to exclude certain data types:
='number').head() drinks.select_dtypes(exclude
country | continent | |
---|---|---|
0 | Afghanistan | Asia |
1 | Albania | Europe |
2 | Algeria | Africa |
3 | Andorra | Europe |
4 | Angola | Africa |
18.8 Convert strings to numbers
Let’s create another example DataFrame:
= pd.DataFrame({'col_one':['1.1', '2.2', '3.3'],
df 'col_two':['4.4', '5.5', '6.6'],
'col_three':['7.7', '8.8', '-']})
df
col_one | col_two | col_three | |
---|---|---|---|
0 | 1.1 | 4.4 | 7.7 |
1 | 2.2 | 5.5 | 8.8 |
2 | 3.3 | 6.6 | - |
These numbers are actually stored as strings, which results in object columns:
df.dtypes
col_one object
col_two object
col_three object
dtype: object
In order to do mathematical operations on these columns, we need to convert the data types to numeric. You can use the astype()
method on the first two columns:
'col_one':'float', 'col_two':'float'}).dtypes df.astype({
col_one float64
col_two float64
col_three object
dtype: object
However, this would have resulted in an error if you tried to use it on the third column, because that column contains a dash to represent zero and pandas doesn’t understand how to handle it.
Instead, you can use the to_numeric()
function on the third column and tell it to convert any invalid input into NaN
values:
='coerce') pd.to_numeric(df.col_three, errors
0 7.7
1 8.8
2 NaN
Name: col_three, dtype: float64
If you know that the NaN
values actually represent zeros, you can fill them with zeros using the fillna()
method:
='coerce').fillna(0) pd.to_numeric(df.col_three, errors
0 7.7
1 8.8
2 0.0
Name: col_three, dtype: float64
Finally, you can apply this function to the entire DataFrame all at once by using the apply()
method:
= df.apply(pd.to_numeric, errors='coerce').fillna(0)
df df
col_one | col_two | col_three | |
---|---|---|---|
0 | 1.1 | 4.4 | 7.7 |
1 | 2.2 | 5.5 | 8.8 |
2 | 3.3 | 6.6 | 0.0 |
This one line of code accomplishes our goal, because all of the data types have now been converted to float:
df.dtypes
col_one float64
col_two float64
col_three float64
dtype: object
18.9 Reduce DataFrame size
pandas DataFrames are designed to fit into memory, and so sometimes you need to reduce the DataFrame size in order to work with it on your system.
Here’s the size of the drinks DataFrame:
='deep') drinks.info(memory_usage
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 193 entries, 0 to 192
Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 country 193 non-null object
1 beer_servings 193 non-null int64
2 spirit_servings 193 non-null int64
3 wine_servings 193 non-null int64
4 total_litres_of_pure_alcohol 193 non-null float64
5 continent 193 non-null object
dtypes: float64(1), int64(3), object(2)
memory usage: 27.5 KB
You can see that it currently uses 30.4 KB.
If you’re having performance problems with your DataFrame, or you can’t even read it into memory, there are two easy steps you can take during the file reading process to reduce the DataFrame size.
The first step is to only read in the columns that you actually need, which we specify with the “usecols” parameter:
= ['beer_servings', 'continent']
cols = pd.read_csv('http://bit.ly/drinksbycountry', usecols=cols)
small_drinks ='deep') small_drinks.info(memory_usage
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 193 entries, 0 to 192
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 beer_servings 193 non-null int64
1 continent 193 non-null object
dtypes: int64(1), object(1)
memory usage: 12.2 KB
By only reading in these two columns, we’ve reduced the DataFrame size to 13.6 KB.
The second step is to convert any object columns containing categorical data to the category data type, which we specify with the “dtype” parameter:
= {'continent':'category'}
dtypes = pd.read_csv('http://bit.ly/drinksbycountry', usecols=cols, dtype=dtypes)
smaller_drinks ='deep') smaller_drinks.info(memory_usage
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 193 entries, 0 to 192
Data columns (total 2 columns):
beer_servings 193 non-null int64
continent 193 non-null category
dtypes: category(1), int64(1)
memory usage: 2.3 KB
By reading in the continent column as the category data type, we’ve further reduced the DataFrame size to 2.3 KB.
Keep in mind that the category data type will only reduce memory usage if you have a small number of categories relative to the number of rows.
18.10 9. Build a DataFrame from multiple files (row-wise)
Let’s say that your dataset is spread across multiple files, but you want to read the dataset into a single DataFrame.
For example, I have a small dataset of stock data in which each CSV file only includes a single day. Here’s the first day:
'data/stocks1.csv') pd.read_csv(
Date | Close | Volume | Symbol | |
---|---|---|---|---|
0 | 2016-10-03 | 31.50 | 14070500 | CSCO |
1 | 2016-10-03 | 112.52 | 21701800 | AAPL |
2 | 2016-10-03 | 57.42 | 19189500 | MSFT |
Here’s the second day:
'data/stocks2.csv') pd.read_csv(
Date | Close | Volume | Symbol | |
---|---|---|---|---|
0 | 2016-10-04 | 113.00 | 29736800 | AAPL |
1 | 2016-10-04 | 57.24 | 20085900 | MSFT |
2 | 2016-10-04 | 31.35 | 18460400 | CSCO |
And here’s the third day:
'data/stocks3.csv') pd.read_csv(
Date | Close | Volume | Symbol | |
---|---|---|---|---|
0 | 2016-10-05 | 57.64 | 16726400 | MSFT |
1 | 2016-10-05 | 31.59 | 11808600 | CSCO |
2 | 2016-10-05 | 113.05 | 21453100 | AAPL |
You could read each CSV file into its own DataFrame, combine them together, and then delete the original DataFrames, but that would be memory inefficient and require a lot of code.
A better solution is to use the built-in glob module:
from glob import glob
You can pass a pattern to glob()
, including wildcard characters, and it will return a list of all files that match that pattern.
In this case, glob is looking in the “data” subdirectory for all CSV files that start with the word “stocks”:
= sorted(glob('data/stocks*.csv'))
stock_files stock_files
['data/stocks1.csv', 'data/stocks2.csv', 'data/stocks3.csv']
glob returns filenames in an arbitrary order, which is why we sorted the list using Python’s built-in sorted()
function.
We can then use a generator expression to read each of the files using read_csv()
and pass the results to the concat()
function, which will concatenate the rows into a single DataFrame:
file) for file in stock_files)) pd.concat((pd.read_csv(
Date | Close | Volume | Symbol | |
---|---|---|---|---|
0 | 2016-10-03 | 31.50 | 14070500 | CSCO |
1 | 2016-10-03 | 112.52 | 21701800 | AAPL |
2 | 2016-10-03 | 57.42 | 19189500 | MSFT |
0 | 2016-10-04 | 113.00 | 29736800 | AAPL |
1 | 2016-10-04 | 57.24 | 20085900 | MSFT |
2 | 2016-10-04 | 31.35 | 18460400 | CSCO |
0 | 2016-10-05 | 57.64 | 16726400 | MSFT |
1 | 2016-10-05 | 31.59 | 11808600 | CSCO |
2 | 2016-10-05 | 113.05 | 21453100 | AAPL |
Unfortunately, there are now duplicate values in the index. To avoid that, we can tell the concat()
function to ignore the index and instead use the default integer index:
file) for file in stock_files), ignore_index=True) pd.concat((pd.read_csv(
Date | Close | Volume | Symbol | |
---|---|---|---|---|
0 | 2016-10-03 | 31.50 | 14070500 | CSCO |
1 | 2016-10-03 | 112.52 | 21701800 | AAPL |
2 | 2016-10-03 | 57.42 | 19189500 | MSFT |
3 | 2016-10-04 | 113.00 | 29736800 | AAPL |
4 | 2016-10-04 | 57.24 | 20085900 | MSFT |
5 | 2016-10-04 | 31.35 | 18460400 | CSCO |
6 | 2016-10-05 | 57.64 | 16726400 | MSFT |
7 | 2016-10-05 | 31.59 | 11808600 | CSCO |
8 | 2016-10-05 | 113.05 | 21453100 | AAPL |
18.11 10. Build a DataFrame from multiple files (column-wise)
The previous trick is useful when each file contains rows from your dataset. But what if each file instead contains columns from your dataset?
Here’s an example in which the drinks dataset has been split into two CSV files, and each file contains three columns:
'data/drinks1.csv').head() pd.read_csv(
country | beer_servings | spirit_servings | |
---|---|---|---|
0 | Afghanistan | 0 | 0 |
1 | Albania | 89 | 132 |
2 | Algeria | 25 | 0 |
3 | Andorra | 245 | 138 |
4 | Angola | 217 | 57 |
'data/drinks2.csv').head() pd.read_csv(
wine_servings | total_litres_of_pure_alcohol | continent | |
---|---|---|---|
0 | 0 | 0.0 | Asia |
1 | 54 | 4.9 | Europe |
2 | 14 | 0.7 | Africa |
3 | 312 | 12.4 | Europe |
4 | 45 | 5.9 | Africa |
Similar to the previous trick, we’ll start by using glob()
:
= sorted(glob('data/drinks*.csv')) drink_files
And this time, we’ll tell the concat()
function to concatenate along the columns axis:
file) for file in drink_files), axis='columns').head() pd.concat((pd.read_csv(
country | beer_servings | spirit_servings | wine_servings | total_litres_of_pure_alcohol | continent | |
---|---|---|---|---|---|---|
0 | Afghanistan | 0 | 0 | 0 | 0.0 | Asia |
1 | Albania | 89 | 132 | 54 | 4.9 | Europe |
2 | Algeria | 25 | 0 | 14 | 0.7 | Africa |
3 | Andorra | 245 | 138 | 312 | 12.4 | Europe |
4 | Angola | 217 | 57 | 45 | 5.9 | Africa |
Now our DataFrame has all six columns.
18.12 11. Create a DataFrame from the clipboard
Let’s say that you have some data stored in an Excel spreadsheet or a Google Sheet, and you want to get it into a DataFrame as quickly as possible.
Just select the data and copy it to the clipboard. Then, you can use the read_clipboard()
function to read it into a DataFrame:
= pd.read_clipboard()
df df
Column A | Column B | Column C | |
---|---|---|---|
0 | 1 | 4.4 | seven |
1 | 2 | 5.5 | eight |
2 | 3 | 6.6 | nine |
Just like the read_csv()
function, read_clipboard()
automatically detects the correct data type for each column:
df.dtypes
Column A int64
Column B float64
Column C object
dtype: object
Let’s copy one other dataset to the clipboard:
= pd.read_clipboard()
df df
Left | Right | |
---|---|---|
Alice | 10 | 40 |
Bob | 20 | 50 |
Charlie | 30 | 60 |
Amazingly, pandas has even identified the first column as the index:
df.index
Index(['Alice', 'Bob', 'Charlie'], dtype='object')
Keep in mind that if you want your work to be reproducible in the future, read_clipboard()
is not the recommended approach.
18.13 12. Split a DataFrame into two random subsets
Let’s say that you want to split a DataFrame into two parts, randomly assigning 75% of the rows to one DataFrame and the other 25% to a second DataFrame.
For example, we have a DataFrame of movie ratings with 979 rows:
len(movies)
979
We can use the sample()
method to randomly select 75% of the rows and assign them to the “movies_1” DataFrame:
= movies.sample(frac=0.75, random_state=1234) movies_1
Then we can use the drop()
method to drop all rows that are in “movies_1” and assign the remaining rows to “movies_2”:
= movies.drop(movies_1.index) movies_2
You can see that the total number of rows is correct:
len(movies_1) + len(movies_2)
979
And you can see from the index that every movie is in either “movies_1”:
movies_1.index.sort_values()
Int64Index([ 0, 2, 5, 6, 7, 8, 9, 11, 13, 16,
...
966, 967, 969, 971, 972, 974, 975, 976, 977, 978],
dtype='int64', length=734)
…or “movies_2”:
movies_2.index.sort_values()
Int64Index([ 1, 3, 4, 10, 12, 14, 15, 18, 26, 30,
...
931, 934, 937, 941, 950, 954, 960, 968, 970, 973],
dtype='int64', length=245)
Keep in mind that this approach will not work if your index values are not unique.
18.14 13. Filter a DataFrame by multiple categories
Let’s take a look at the movies DataFrame:
movies.head()
star_rating | title | content_rating | genre | duration | actors_list | |
---|---|---|---|---|---|---|
0 | 9.3 | The Shawshank Redemption | R | Crime | 142 | [u'Tim Robbins', u'Morgan Freeman', u'Bob Gunt... |
1 | 9.2 | The Godfather | R | Crime | 175 | [u'Marlon Brando', u'Al Pacino', u'James Caan'] |
2 | 9.1 | The Godfather: Part II | R | Crime | 200 | [u'Al Pacino', u'Robert De Niro', u'Robert Duv... |
3 | 9.0 | The Dark Knight | PG-13 | Action | 152 | [u'Christian Bale', u'Heath Ledger', u'Aaron E... |
4 | 8.9 | Pulp Fiction | R | Crime | 154 | [u'John Travolta', u'Uma Thurman', u'Samuel L.... |
One of the columns is genre:
movies.genre.unique()
array(['Crime', 'Action', 'Drama', 'Western', 'Adventure', 'Biography',
'Comedy', 'Animation', 'Mystery', 'Horror', 'Film-Noir', 'Sci-Fi',
'History', 'Thriller', 'Family', 'Fantasy'], dtype=object)
If we wanted to filter the DataFrame to only show movies with the genre Action or Drama or Western, we could use multiple conditions separated by the “or” operator:
== 'Action') |
movies[(movies.genre == 'Drama') |
(movies.genre == 'Western')].head() (movies.genre
star_rating | title | content_rating | genre | duration | actors_list | |
---|---|---|---|---|---|---|
3 | 9.0 | The Dark Knight | PG-13 | Action | 152 | [u'Christian Bale', u'Heath Ledger', u'Aaron E... |
5 | 8.9 | 12 Angry Men | NOT RATED | Drama | 96 | [u'Henry Fonda', u'Lee J. Cobb', u'Martin Bals... |
6 | 8.9 | The Good, the Bad and the Ugly | NOT RATED | Western | 161 | [u'Clint Eastwood', u'Eli Wallach', u'Lee Van ... |
9 | 8.9 | Fight Club | R | Drama | 139 | [u'Brad Pitt', u'Edward Norton', u'Helena Bonh... |
11 | 8.8 | Inception | PG-13 | Action | 148 | [u'Leonardo DiCaprio', u'Joseph Gordon-Levitt'... |
However, you can actually rewrite this code more clearly by using the isin()
method and passing it a list of genres:
'Action', 'Drama', 'Western'])].head() movies[movies.genre.isin([
star_rating | title | content_rating | genre | duration | actors_list | |
---|---|---|---|---|---|---|
3 | 9.0 | The Dark Knight | PG-13 | Action | 152 | [u'Christian Bale', u'Heath Ledger', u'Aaron E... |
5 | 8.9 | 12 Angry Men | NOT RATED | Drama | 96 | [u'Henry Fonda', u'Lee J. Cobb', u'Martin Bals... |
6 | 8.9 | The Good, the Bad and the Ugly | NOT RATED | Western | 161 | [u'Clint Eastwood', u'Eli Wallach', u'Lee Van ... |
9 | 8.9 | Fight Club | R | Drama | 139 | [u'Brad Pitt', u'Edward Norton', u'Helena Bonh... |
11 | 8.8 | Inception | PG-13 | Action | 148 | [u'Leonardo DiCaprio', u'Joseph Gordon-Levitt'... |
And if you want to reverse this filter, so that you are excluding (rather than including) those three genres, you can put a tilde in front of the condition:
~movies.genre.isin(['Action', 'Drama', 'Western'])].head() movies[
star_rating | title | content_rating | genre | duration | actors_list | |
---|---|---|---|---|---|---|
0 | 9.3 | The Shawshank Redemption | R | Crime | 142 | [u'Tim Robbins', u'Morgan Freeman', u'Bob Gunt... |
1 | 9.2 | The Godfather | R | Crime | 175 | [u'Marlon Brando', u'Al Pacino', u'James Caan'] |
2 | 9.1 | The Godfather: Part II | R | Crime | 200 | [u'Al Pacino', u'Robert De Niro', u'Robert Duv... |
4 | 8.9 | Pulp Fiction | R | Crime | 154 | [u'John Travolta', u'Uma Thurman', u'Samuel L.... |
7 | 8.9 | The Lord of the Rings: The Return of the King | PG-13 | Adventure | 201 | [u'Elijah Wood', u'Viggo Mortensen', u'Ian McK... |
This works because tilde is the “not” operator in Python.
18.15 14. Filter a DataFrame by largest categories
Let’s say that you needed to filter the movies DataFrame by genre, but only include the 3 largest genres.
We’ll start by taking the value_counts()
of genre and saving it as a Series called counts:
= movies.genre.value_counts()
counts counts
Drama 278
Comedy 156
Action 136
Crime 124
Biography 77
Adventure 75
Animation 62
Horror 29
Mystery 16
Western 9
Sci-Fi 5
Thriller 5
Film-Noir 3
Family 2
Fantasy 1
History 1
Name: genre, dtype: int64
The Series method nlargest()
makes it easy to select the 3 largest values in this Series:
3) counts.nlargest(
Drama 278
Comedy 156
Action 136
Name: genre, dtype: int64
And all we actually need from this Series is the index:
3).index counts.nlargest(
Index(['Drama', 'Comedy', 'Action'], dtype='object')
Finally, we can pass the index object to isin()
, and it will be treated like a list of genres:
3).index)].head() movies[movies.genre.isin(counts.nlargest(
star_rating | title | content_rating | genre | duration | actors_list | |
---|---|---|---|---|---|---|
3 | 9.0 | The Dark Knight | PG-13 | Action | 152 | [u'Christian Bale', u'Heath Ledger', u'Aaron E... |
5 | 8.9 | 12 Angry Men | NOT RATED | Drama | 96 | [u'Henry Fonda', u'Lee J. Cobb', u'Martin Bals... |
9 | 8.9 | Fight Club | R | Drama | 139 | [u'Brad Pitt', u'Edward Norton', u'Helena Bonh... |
11 | 8.8 | Inception | PG-13 | Action | 148 | [u'Leonardo DiCaprio', u'Joseph Gordon-Levitt'... |
12 | 8.8 | Star Wars: Episode V - The Empire Strikes Back | PG | Action | 124 | [u'Mark Hamill', u'Harrison Ford', u'Carrie Fi... |
Thus, only Drama and Comedy and Action movies remain in the DataFrame.
18.16 15. Handle missing values
Let’s look at a dataset of UFO sightings:
ufo.head()
City | Colors Reported | Shape Reported | State | Time | |
---|---|---|---|---|---|
0 | Ithaca | NaN | TRIANGLE | NY | 1930-06-01 22:00:00 |
1 | Willingboro | NaN | OTHER | NJ | 1930-06-30 20:00:00 |
2 | Holyoke | NaN | OVAL | CO | 1931-02-15 14:00:00 |
3 | Abilene | NaN | DISK | KS | 1931-06-01 13:00:00 |
4 | New York Worlds Fair | NaN | LIGHT | NY | 1933-04-18 19:00:00 |
You’ll notice that some of the values are missing.
To find out how many values are missing in each column, you can use the isna()
method and then take the sum()
:
sum() ufo.isna().
City 25
Colors Reported 15359
Shape Reported 2644
State 0
Time 0
dtype: int64
isna()
generated a DataFrame of True and False values, and sum()
converted all of the True values to 1 and added them up.
Similarly, you can find out the percentage of values that are missing by taking the mean()
of isna()
:
ufo.isna().mean()
City 0.001371
Colors Reported 0.842004
Shape Reported 0.144948
State 0.000000
Time 0.000000
dtype: float64
If you want to drop the columns that have any missing values, you can use the dropna()
method:
='columns').head() ufo.dropna(axis
State | Time | |
---|---|---|
0 | NY | 1930-06-01 22:00:00 |
1 | NJ | 1930-06-30 20:00:00 |
2 | CO | 1931-02-15 14:00:00 |
3 | KS | 1931-06-01 13:00:00 |
4 | NY | 1933-04-18 19:00:00 |
Or if you want to drop columns in which more than 10% of the values are missing, you can set a threshold for dropna()
:
=len(ufo)*0.9, axis='columns').head() ufo.dropna(thresh
City | State | Time | |
---|---|---|---|
0 | Ithaca | NY | 1930-06-01 22:00:00 |
1 | Willingboro | NJ | 1930-06-30 20:00:00 |
2 | Holyoke | CO | 1931-02-15 14:00:00 |
3 | Abilene | KS | 1931-06-01 13:00:00 |
4 | New York Worlds Fair | NY | 1933-04-18 19:00:00 |
len(ufo)
returns the total number of rows, and then we multiply that by 0.9 to tell pandas to only keep columns in which at least 90% of the values are not missing.
18.17 16. Split a string into multiple columns
Let’s create another example DataFrame:
= pd.DataFrame({'name':['John Arthur Doe', 'Jane Ann Smith'],
df 'location':['Los Angeles, CA', 'Washington, DC']})
df
name | location | |
---|---|---|
0 | John Arthur Doe | Los Angeles, CA |
1 | Jane Ann Smith | Washington, DC |
What if we wanted to split the “name” column into three separate columns, for first, middle, and last name? We would use the str.split()
method and tell it to split on a space character and expand the results into a DataFrame:
str.split(' ', expand=True) df.name.
0 | 1 | 2 | |
---|---|---|---|
0 | John | Arthur | Doe |
1 | Jane | Ann | Smith |
These three columns can actually be saved to the original DataFrame in a single assignment statement:
'first', 'middle', 'last']] = df.name.str.split(' ', expand=True)
df[[ df
name | location | first | middle | last | |
---|---|---|---|---|---|
0 | John Arthur Doe | Los Angeles, CA | John | Arthur | Doe |
1 | Jane Ann Smith | Washington, DC | Jane | Ann | Smith |
What if we wanted to split a string, but only keep one of the resulting columns? For example, let’s split the location column on “comma space”:
str.split(', ', expand=True) df.location.
0 | 1 | |
---|---|---|
0 | Los Angeles | CA |
1 | Washington | DC |
If we only cared about saving the city name in column 0, we can just select that column and save it to the DataFrame:
'city'] = df.location.str.split(', ', expand=True)[0]
df[ df
name | location | first | middle | last | city | |
---|---|---|---|---|---|---|
0 | John Arthur Doe | Los Angeles, CA | John | Arthur | Doe | Los Angeles |
1 | Jane Ann Smith | Washington, DC | Jane | Ann | Smith | Washington |
18.18 17. Expand a Series of lists into a DataFrame
Let’s create another example DataFrame:
= pd.DataFrame({'col_one':['a', 'b', 'c'], 'col_two':[[10, 40], [20, 50], [30, 60]]})
df df
col_one | col_two | |
---|---|---|
0 | a | [10, 40] |
1 | b | [20, 50] |
2 | c | [30, 60] |
There are two columns, and the second column contains regular Python lists of integers.
If we wanted to expand the second column into its own DataFrame, we can use the apply()
method on that column and pass it the Series constructor:
= df.col_two.apply(pd.Series)
df_new df_new
0 | 1 | |
---|---|---|
0 | 10 | 40 |
1 | 20 | 50 |
2 | 30 | 60 |
And by using the concat()
function, you can combine the original DataFrame with the new DataFrame:
='columns') pd.concat([df, df_new], axis
col_one | col_two | 0 | 1 | |
---|---|---|---|---|
0 | a | [10, 40] | 10 | 40 |
1 | b | [20, 50] | 20 | 50 |
2 | c | [30, 60] | 30 | 60 |
18.19 18. Aggregate by multiple functions
Let’s look at a DataFrame of orders from the Chipotle restaurant chain:
10) orders.head(
order_id | quantity | item_name | choice_description | item_price | |
---|---|---|---|---|---|
0 | 1 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.39 |
1 | 1 | 1 | Izze | [Clementine] | 3.39 |
2 | 1 | 1 | Nantucket Nectar | [Apple] | 3.39 |
3 | 1 | 1 | Chips and Tomatillo-Green Chili Salsa | NaN | 2.39 |
4 | 2 | 2 | Chicken Bowl | [Tomatillo-Red Chili Salsa (Hot), [Black Beans... | 16.98 |
5 | 3 | 1 | Chicken Bowl | [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou... | 10.98 |
6 | 3 | 1 | Side of Chips | NaN | 1.69 |
7 | 4 | 1 | Steak Burrito | [Tomatillo Red Chili Salsa, [Fajita Vegetables... | 11.75 |
8 | 4 | 1 | Steak Soft Tacos | [Tomatillo Green Chili Salsa, [Pinto Beans, Ch... | 9.25 |
9 | 5 | 1 | Steak Burrito | [Fresh Tomato Salsa, [Rice, Black Beans, Pinto... | 9.25 |
Each order has an order_id and consists of one or more rows. To figure out the total price of an order, you sum the item_price for that order_id. For example, here’s the total price of order number 1:
== 1].item_price.sum() orders[orders.order_id
11.56
If you wanted to calculate the total price of every order, you would groupby()
order_id and then take the sum of item_price for each group:
'order_id').item_price.sum().head() orders.groupby(
order_id
1 11.56
2 16.98
3 12.67
4 21.00
5 13.70
Name: item_price, dtype: float64
However, you’re not actually limited to aggregating by a single function such as sum()
. To aggregate by multiple functions, you use the agg()
method and pass it a list of functions such as sum()
and count()
:
'order_id').item_price.agg(['sum', 'count']).head() orders.groupby(
sum | count | |
---|---|---|
order_id | ||
1 | 11.56 | 4 |
2 | 16.98 | 1 |
3 | 12.67 | 2 |
4 | 21.00 | 2 |
5 | 13.70 | 2 |
That gives us the total price of each order as well as the number of items in each order.
18.20 19. Combine the output of an aggregation with a DataFrame
Let’s take another look at the orders DataFrame:
10) orders.head(
order_id | quantity | item_name | choice_description | item_price | |
---|---|---|---|---|---|
0 | 1 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.39 |
1 | 1 | 1 | Izze | [Clementine] | 3.39 |
2 | 1 | 1 | Nantucket Nectar | [Apple] | 3.39 |
3 | 1 | 1 | Chips and Tomatillo-Green Chili Salsa | NaN | 2.39 |
4 | 2 | 2 | Chicken Bowl | [Tomatillo-Red Chili Salsa (Hot), [Black Beans... | 16.98 |
5 | 3 | 1 | Chicken Bowl | [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou... | 10.98 |
6 | 3 | 1 | Side of Chips | NaN | 1.69 |
7 | 4 | 1 | Steak Burrito | [Tomatillo Red Chili Salsa, [Fajita Vegetables... | 11.75 |
8 | 4 | 1 | Steak Soft Tacos | [Tomatillo Green Chili Salsa, [Pinto Beans, Ch... | 9.25 |
9 | 5 | 1 | Steak Burrito | [Fresh Tomato Salsa, [Rice, Black Beans, Pinto... | 9.25 |
What if we wanted to create a new column listing the total price of each order? Recall that we calculated the total price using the sum()
method:
'order_id').item_price.sum().head() orders.groupby(
order_id
1 11.56
2 16.98
3 12.67
4 21.00
5 13.70
Name: item_price, dtype: float64
sum()
is an aggregation function, which means that it returns a reduced version of the input data.
In other words, the output of the sum()
function:
len(orders.groupby('order_id').item_price.sum())
1834
…is smaller than the input to the function:
len(orders.item_price)
4622
The solution is to use the transform()
method, which performs the same calculation but returns output data that is the same shape as the input data:
= orders.groupby('order_id').item_price.transform('sum')
total_price len(total_price)
4622
We’ll store the results in a new DataFrame column called total_price:
'total_price'] = total_price
orders[10) orders.head(
order_id | quantity | item_name | choice_description | item_price | total_price | |
---|---|---|---|---|---|---|
0 | 1 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.39 | 11.56 |
1 | 1 | 1 | Izze | [Clementine] | 3.39 | 11.56 |
2 | 1 | 1 | Nantucket Nectar | [Apple] | 3.39 | 11.56 |
3 | 1 | 1 | Chips and Tomatillo-Green Chili Salsa | NaN | 2.39 | 11.56 |
4 | 2 | 2 | Chicken Bowl | [Tomatillo-Red Chili Salsa (Hot), [Black Beans... | 16.98 | 16.98 |
5 | 3 | 1 | Chicken Bowl | [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou... | 10.98 | 12.67 |
6 | 3 | 1 | Side of Chips | NaN | 1.69 | 12.67 |
7 | 4 | 1 | Steak Burrito | [Tomatillo Red Chili Salsa, [Fajita Vegetables... | 11.75 | 21.00 |
8 | 4 | 1 | Steak Soft Tacos | [Tomatillo Green Chili Salsa, [Pinto Beans, Ch... | 9.25 | 21.00 |
9 | 5 | 1 | Steak Burrito | [Fresh Tomato Salsa, [Rice, Black Beans, Pinto... | 9.25 | 13.70 |
As you can see, the total price of each order is now listed on every single line.
That makes it easy to calculate the percentage of the total order price that each line represents:
'percent_of_total'] = orders.item_price / orders.total_price
orders[10) orders.head(
order_id | quantity | item_name | choice_description | item_price | total_price | percent_of_total | |
---|---|---|---|---|---|---|---|
0 | 1 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.39 | 11.56 | 0.206747 |
1 | 1 | 1 | Izze | [Clementine] | 3.39 | 11.56 | 0.293253 |
2 | 1 | 1 | Nantucket Nectar | [Apple] | 3.39 | 11.56 | 0.293253 |
3 | 1 | 1 | Chips and Tomatillo-Green Chili Salsa | NaN | 2.39 | 11.56 | 0.206747 |
4 | 2 | 2 | Chicken Bowl | [Tomatillo-Red Chili Salsa (Hot), [Black Beans... | 16.98 | 16.98 | 1.000000 |
5 | 3 | 1 | Chicken Bowl | [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou... | 10.98 | 12.67 | 0.866614 |
6 | 3 | 1 | Side of Chips | NaN | 1.69 | 12.67 | 0.133386 |
7 | 4 | 1 | Steak Burrito | [Tomatillo Red Chili Salsa, [Fajita Vegetables... | 11.75 | 21.00 | 0.559524 |
8 | 4 | 1 | Steak Soft Tacos | [Tomatillo Green Chili Salsa, [Pinto Beans, Ch... | 9.25 | 21.00 | 0.440476 |
9 | 5 | 1 | Steak Burrito | [Fresh Tomato Salsa, [Rice, Black Beans, Pinto... | 9.25 | 13.70 | 0.675182 |
18.21 20. Select a slice of rows and columns
Let’s take a look at another dataset:
titanic.head()
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
This is the famous Titanic dataset, which shows information about passengers on the Titanic and whether or not they survived.
If you wanted a numerical summary of the dataset, you would use the describe()
method:
titanic.describe()
PassengerId | Survived | Pclass | Age | SibSp | Parch | Fare | |
---|---|---|---|---|---|---|---|
count | 891.000000 | 891.000000 | 891.000000 | 714.000000 | 891.000000 | 891.000000 | 891.000000 |
mean | 446.000000 | 0.383838 | 2.308642 | 29.699118 | 0.523008 | 0.381594 | 32.204208 |
std | 257.353842 | 0.486592 | 0.836071 | 14.526497 | 1.102743 | 0.806057 | 49.693429 |
min | 1.000000 | 0.000000 | 1.000000 | 0.420000 | 0.000000 | 0.000000 | 0.000000 |
25% | 223.500000 | 0.000000 | 2.000000 | 20.125000 | 0.000000 | 0.000000 | 7.910400 |
50% | 446.000000 | 0.000000 | 3.000000 | 28.000000 | 0.000000 | 0.000000 | 14.454200 |
75% | 668.500000 | 1.000000 | 3.000000 | 38.000000 | 1.000000 | 0.000000 | 31.000000 |
max | 891.000000 | 1.000000 | 3.000000 | 80.000000 | 8.000000 | 6.000000 | 512.329200 |
However, the resulting DataFrame might be displaying more information than you need.
If you wanted to filter it to only show the “five-number summary”, you can use the loc
accessor and pass it a slice of the “min” through the “max” row labels:
'min':'max'] titanic.describe().loc[
PassengerId | Survived | Pclass | Age | SibSp | Parch | Fare | |
---|---|---|---|---|---|---|---|
min | 1.0 | 0.0 | 1.0 | 0.420 | 0.0 | 0.0 | 0.0000 |
25% | 223.5 | 0.0 | 2.0 | 20.125 | 0.0 | 0.0 | 7.9104 |
50% | 446.0 | 0.0 | 3.0 | 28.000 | 0.0 | 0.0 | 14.4542 |
75% | 668.5 | 1.0 | 3.0 | 38.000 | 1.0 | 0.0 | 31.0000 |
max | 891.0 | 1.0 | 3.0 | 80.000 | 8.0 | 6.0 | 512.3292 |
And if you’re not interested in all of the columns, you can also pass it a slice of column labels:
'min':'max', 'Pclass':'Parch'] titanic.describe().loc[
Pclass | Age | SibSp | Parch | |
---|---|---|---|---|
min | 1.0 | 0.420 | 0.0 | 0.0 |
25% | 2.0 | 20.125 | 0.0 | 0.0 |
50% | 3.0 | 28.000 | 0.0 | 0.0 |
75% | 3.0 | 38.000 | 1.0 | 0.0 |
max | 3.0 | 80.000 | 8.0 | 6.0 |
18.22 21. Reshape a MultiIndexed Series
The Titanic dataset has a “Survived” column made up of ones and zeros, so you can calculate the overall survival rate by taking a mean of that column:
titanic.Survived.mean()
0.3838383838383838
If you wanted to calculate the survival rate by a single category such as “Sex”, you would use a groupby()
:
'Sex').Survived.mean() titanic.groupby(
Sex
female 0.742038
male 0.188908
Name: Survived, dtype: float64
And if you wanted to calculate the survival rate across two different categories at once, you would groupby()
both of those categories:
'Sex', 'Pclass']).Survived.mean() titanic.groupby([
Sex Pclass
female 1 0.968085
2 0.921053
3 0.500000
male 1 0.368852
2 0.157407
3 0.135447
Name: Survived, dtype: float64
This shows the survival rate for every combination of Sex and Passenger Class. It’s stored as a MultiIndexed Series, meaning that it has multiple index levels to the left of the actual data.
It can be hard to read and interact with data in this format, so it’s often more convenient to reshape a MultiIndexed Series into a DataFrame by using the unstack()
method:
'Sex', 'Pclass']).Survived.mean().unstack() titanic.groupby([
Pclass | 1 | 2 | 3 |
---|---|---|---|
Sex | |||
female | 0.968085 | 0.921053 | 0.500000 |
male | 0.368852 | 0.157407 | 0.135447 |
This DataFrame contains the same exact data as the MultiIndexed Series, except that now you can interact with it using familiar DataFrame methods.
18.23 22. Create a pivot table
If you often create DataFrames like the one above, you might find it more convenient to use the pivot_table()
method instead:
='Sex', columns='Pclass', values='Survived', aggfunc='mean') titanic.pivot_table(index
Pclass | 1 | 2 | 3 |
---|---|---|---|
Sex | |||
female | 0.968085 | 0.921053 | 0.500000 |
male | 0.368852 | 0.157407 | 0.135447 |
With a pivot table, you directly specify the index, the columns, the values, and the aggregation function.
An added benefit of a pivot table is that you can easily add row and column totals by setting margins=True
:
='Sex', columns='Pclass', values='Survived', aggfunc='mean',
titanic.pivot_table(index=True) margins
Pclass | 1 | 2 | 3 | All |
---|---|---|---|---|
Sex | ||||
female | 0.968085 | 0.921053 | 0.500000 | 0.742038 |
male | 0.368852 | 0.157407 | 0.135447 | 0.188908 |
All | 0.629630 | 0.472826 | 0.242363 | 0.383838 |
This shows the overall survival rate as well as the survival rate by Sex and Passenger Class.
Finally, you can create a cross-tabulation just by changing the aggregation function from “mean” to “count”:
='Sex', columns='Pclass', values='Survived', aggfunc='count',
titanic.pivot_table(index=True) margins
Pclass | 1 | 2 | 3 | All |
---|---|---|---|---|
Sex | ||||
female | 94 | 76 | 144 | 314 |
male | 122 | 108 | 347 | 577 |
All | 216 | 184 | 491 | 891 |
This shows the number of records that appear in each combination of categories.
18.24 23. Convert continuous data into categorical data
Let’s take a look at the Age column from the Titanic dataset:
10) titanic.Age.head(
0 22.0
1 38.0
2 26.0
3 35.0
4 35.0
5 NaN
6 54.0
7 2.0
8 27.0
9 14.0
Name: Age, dtype: float64
It’s currently continuous data, but what if you wanted to convert it into categorical data?
One solution would be to label the age ranges, such as “child”, “young adult”, and “adult”. The best way to do this is by using the cut()
function:
=[0, 18, 25, 99], labels=['child', 'young adult', 'adult']).head(10) pd.cut(titanic.Age, bins
0 young adult
1 adult
2 adult
3 adult
4 adult
5 NaN
6 adult
7 child
8 adult
9 child
Name: Age, dtype: category
Categories (3, object): [child < young adult < adult]
This assigned each value to a bin with a label. Ages 0 to 18 were assigned the label “child”, ages 18 to 25 were assigned the label “young adult”, and ages 25 to 99 were assigned the label “adult”.
Notice that the data type is now “category”, and the categories are automatically ordered.
18.25 24. Change display options
Let’s take another look at the Titanic dataset:
titanic.head()
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
Notice that the Age column has 1 decimal place and the Fare column has 4 decimal places. What if you wanted to standardize the display to use 2 decimal places?
You can use the set_option()
function:
'display.float_format', '{:.2f}'.format) pd.set_option(
The first argument is the name of the option, and the second argument is a Python format string.
titanic.head()
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.00 | 1 | 0 | A/5 21171 | 7.25 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.00 | 1 | 0 | PC 17599 | 71.28 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.00 | 0 | 0 | STON/O2. 3101282 | 7.92 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.00 | 1 | 0 | 113803 | 53.10 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.00 | 0 | 0 | 373450 | 8.05 | NaN | S |
You can see that Age and Fare are now using 2 decimal places. Note that this did not change the underlying data, only the display of the data.
You can also reset any option back to its default:
'display.float_format') pd.reset_option(
There are many more options you can specify is a similar way.
18.26 25. Style a DataFrame
The previous trick is useful if you want to change the display of your entire notebook. However, a more flexible and powerful approach is to define the style of a particular DataFrame.
Let’s return to the stocks DataFrame:
stocks
Date | Close | Volume | Symbol | |
---|---|---|---|---|
0 | 2016-10-03 | 31.50 | 14070500 | CSCO |
1 | 2016-10-03 | 112.52 | 21701800 | AAPL |
2 | 2016-10-03 | 57.42 | 19189500 | MSFT |
3 | 2016-10-04 | 113.00 | 29736800 | AAPL |
4 | 2016-10-04 | 57.24 | 20085900 | MSFT |
5 | 2016-10-04 | 31.35 | 18460400 | CSCO |
6 | 2016-10-05 | 57.64 | 16726400 | MSFT |
7 | 2016-10-05 | 31.59 | 11808600 | CSCO |
8 | 2016-10-05 | 113.05 | 21453100 | AAPL |
We can create a dictionary of format strings that specifies how each column should be formatted:
= {'Date':'{:%m/%d/%y}', 'Close':'${:.2f}', 'Volume':'{:,}'} format_dict
And then we can pass it to the DataFrame’s style.format()
method:
format(format_dict) stocks.style.
Date | Close | Volume | Symbol | |
---|---|---|---|---|
0 | 10/03/16 | $31.50 | 14,070,500 | CSCO |
1 | 10/03/16 | $112.52 | 21,701,800 | AAPL |
2 | 10/03/16 | $57.42 | 19,189,500 | MSFT |
3 | 10/04/16 | $113.00 | 29,736,800 | AAPL |
4 | 10/04/16 | $57.24 | 20,085,900 | MSFT |
5 | 10/04/16 | $31.35 | 18,460,400 | CSCO |
6 | 10/05/16 | $57.64 | 16,726,400 | MSFT |
7 | 10/05/16 | $31.59 | 11,808,600 | CSCO |
8 | 10/05/16 | $113.05 | 21,453,100 | AAPL |
Notice that the Date is now in month-day-year format, the closing price has a dollar sign, and the Volume has commas.
We can apply more styling by chaining additional methods:
format(format_dict)
(stocks.style.
.hide_index()'Close', color='red')
.highlight_min('Close', color='lightgreen')
.highlight_max( )
Date | Close | Volume | Symbol |
---|---|---|---|
10/03/16 | $31.50 | 14,070,500 | CSCO |
10/03/16 | $112.52 | 21,701,800 | AAPL |
10/03/16 | $57.42 | 19,189,500 | MSFT |
10/04/16 | $113.00 | 29,736,800 | AAPL |
10/04/16 | $57.24 | 20,085,900 | MSFT |
10/04/16 | $31.35 | 18,460,400 | CSCO |
10/05/16 | $57.64 | 16,726,400 | MSFT |
10/05/16 | $31.59 | 11,808,600 | CSCO |
10/05/16 | $113.05 | 21,453,100 | AAPL |
We’ve now hidden the index, highlighted the minimum Close value in red, and highlighted the maximum Close value in green.
Here’s another example of DataFrame styling:
format(format_dict)
(stocks.style.
.hide_index()='Volume', cmap='Blues')
.background_gradient(subset )
Date | Close | Volume | Symbol |
---|---|---|---|
10/03/16 | $31.50 | 14,070,500 | CSCO |
10/03/16 | $112.52 | 21,701,800 | AAPL |
10/03/16 | $57.42 | 19,189,500 | MSFT |
10/04/16 | $113.00 | 29,736,800 | AAPL |
10/04/16 | $57.24 | 20,085,900 | MSFT |
10/04/16 | $31.35 | 18,460,400 | CSCO |
10/05/16 | $57.64 | 16,726,400 | MSFT |
10/05/16 | $31.59 | 11,808,600 | CSCO |
10/05/16 | $113.05 | 21,453,100 | AAPL |
The Volume column now has a background gradient to help you easily identify high and low values.
And here’s one final example:
format(format_dict)
(stocks.style.
.hide_index()'Volume', color='lightblue', align='zero')
.bar('Stock Prices from October 2016')
.set_caption( )
Date | Close | Volume | Symbol |
---|---|---|---|
10/03/16 | $31.50 | 14,070,500 | CSCO |
10/03/16 | $112.52 | 21,701,800 | AAPL |
10/03/16 | $57.42 | 19,189,500 | MSFT |
10/04/16 | $113.00 | 29,736,800 | AAPL |
10/04/16 | $57.24 | 20,085,900 | MSFT |
10/04/16 | $31.35 | 18,460,400 | CSCO |
10/05/16 | $57.64 | 16,726,400 | MSFT |
10/05/16 | $31.59 | 11,808,600 | CSCO |
10/05/16 | $113.05 | 21,453,100 | AAPL |
There’s now a bar chart within the Volume column and a caption above the DataFrame.
Note that there are many more options for how you can style your DataFrame.
18.27 Bonus: Profile a DataFrame
Let’s say that you’ve got a new dataset, and you want to quickly explore it without too much work. There’s a separate package called pandas-profiling that is designed for this purpose.
First you have to install it using conda or pip. Once that’s done, you import pandas_profiling
:
import pandas_profiling
Then, simply run the ProfileReport()
function and pass it any DataFrame. It returns an interactive HTML report:
- The first section is an overview of the dataset and a list of possible issues with the data.
- The next section gives a summary of each column. You can click “toggle details” for even more information.
- The third section shows a heatmap of the correlation between columns.
- And the fourth section shows the head of the dataset.
pandas_profiling.ProfileReport(titanic)
Overview
Dataset info
Number of variables | 12 |
Number of observations | 891 |
Total Missing (%) | 8.1% |
Total size in memory | 83.6 KiB |
Average record size in memory | 96.1 B |
Variables types
Numeric | 6 |
Categorical | 4 |
Boolean | 1 |
Date | 0 |
Text (Unique) | 1 |
Rejected | 0 |
Unsupported | 0 |
Warnings
Variables
Age
Numeric
Distinct count | 89 |
Unique (%) | 10.0% |
Missing (%) | 19.9% |
Missing (n) | 177 |
Infinite (%) | 0.0% |
Infinite (n) | 0 |
Mean | 29.699 |
Minimum | 0.42 |
Maximum | 80 |
Zeros (%) | 0.0% |
Quantile statistics
Minimum | 0.42 |
5-th percentile | 4 |
Q1 | 20.125 |
Median | 28 |
Q3 | 38 |
95-th percentile | 56 |
Maximum | 80 |
Range | 79.58 |
Interquartile range | 17.875 |
Descriptive statistics
Standard deviation | 14.526 |
Coef of variation | 0.48912 |
Kurtosis | 0.17827 |
Mean | 29.699 |
MAD | 11.323 |
Skewness | 0.38911 |
Sum | 21205 |
Variance | 211.02 |
Memory size | 7.0 KiB |
Value | Count | Frequency (%) | |
---|---|---|---|
24.0 | 30 | 3.4% | |
22.0 | 27 | 3.0% | |
18.0 | 26 | 2.9% | |
28.0 | 25 | 2.8% | |
19.0 | 25 | 2.8% | |
30.0 | 25 | 2.8% | |
21.0 | 24 | 2.7% | |
25.0 | 23 | 2.6% | |
36.0 | 22 | 2.5% | |
29.0 | 20 | 2.2% | |
Other values (78) | 467 | 52.4% | |
(Missing) | 177 | 19.9% |
Minimum 5 values
Value | Count | Frequency (%) | |
---|---|---|---|
0.42 | 1 | 0.1% | |
0.67 | 1 | 0.1% | |
0.75 | 2 | 0.2% | |
0.83 | 2 | 0.2% | |
0.92 | 1 | 0.1% |
Maximum 5 values
Value | Count | Frequency (%) | |
---|---|---|---|
70.0 | 2 | 0.2% | |
70.5 | 1 | 0.1% | |
71.0 | 2 | 0.2% | |
74.0 | 1 | 0.1% | |
80.0 | 1 | 0.1% |
Cabin
Categorical
Distinct count | 148 |
Unique (%) | 16.6% |
Missing (%) | 77.1% |
Missing (n) | 687 |
G6 | 4 |
C23 C25 C27 | 4 |
B96 B98 | 4 |
Other values (144) | |
(Missing) |
Value | Count | Frequency (%) | |
---|---|---|---|
G6 | 4 | 0.4% | |
C23 C25 C27 | 4 | 0.4% | |
B96 B98 | 4 | 0.4% | |
D | 3 | 0.3% | |
F2 | 3 | 0.3% | |
F33 | 3 | 0.3% | |
E101 | 3 | 0.3% | |
C22 C26 | 3 | 0.3% | |
C124 | 2 | 0.2% | |
D35 | 2 | 0.2% | |
Other values (137) | 173 | 19.4% | |
(Missing) | 687 | 77.1% |
Embarked
Categorical
Distinct count | 4 |
Unique (%) | 0.4% |
Missing (%) | 0.2% |
Missing (n) | 2 |
S | |
C | |
Q | 77 |
(Missing) | 2 |
Value | Count | Frequency (%) | |
---|---|---|---|
S | 644 | 72.3% | |
C | 168 | 18.9% | |
Q | 77 | 8.6% | |
(Missing) | 2 | 0.2% |
Fare
Numeric
Distinct count | 248 |
Unique (%) | 27.8% |
Missing (%) | 0.0% |
Missing (n) | 0 |
Infinite (%) | 0.0% |
Infinite (n) | 0 |
Mean | 32.204 |
Minimum | 0 |
Maximum | 512.33 |
Zeros (%) | 1.7% |
Quantile statistics
Minimum | 0 |
5-th percentile | 7.225 |
Q1 | 7.9104 |
Median | 14.454 |
Q3 | 31 |
95-th percentile | 112.08 |
Maximum | 512.33 |
Range | 512.33 |
Interquartile range | 23.09 |
Descriptive statistics
Standard deviation | 49.693 |
Coef of variation | 1.5431 |
Kurtosis | 33.398 |
Mean | 32.204 |
MAD | 28.164 |
Skewness | 4.7873 |
Sum | 28694 |
Variance | 2469.4 |
Memory size | 7.0 KiB |
Value | Count | Frequency (%) | |
---|---|---|---|
8.05 | 43 | 4.8% | |
13.0 | 42 | 4.7% | |
7.8958 | 38 | 4.3% | |
7.75 | 34 | 3.8% | |
26.0 | 31 | 3.5% | |
10.5 | 24 | 2.7% | |
7.925 | 18 | 2.0% | |
7.775 | 16 | 1.8% | |
26.55 | 15 | 1.7% | |
0.0 | 15 | 1.7% | |
Other values (238) | 615 | 69.0% |
Minimum 5 values
Value | Count | Frequency (%) | |
---|---|---|---|
0.0 | 15 | 1.7% | |
4.0125 | 1 | 0.1% | |
5.0 | 1 | 0.1% | |
6.2375 | 1 | 0.1% | |
6.4375 | 1 | 0.1% |
Maximum 5 values
Value | Count | Frequency (%) | |
---|---|---|---|
227.525 | 4 | 0.4% | |
247.5208 | 2 | 0.2% | |
262.375 | 2 | 0.2% | |
263.0 | 4 | 0.4% | |
512.3292 | 3 | 0.3% |
Name
Categorical, Unique
First 3 values |
---|
Mockler, Miss. Helen Mary "Ellie" |
Baclini, Miss. Eugenie |
Mayne, Mlle. Berthe Antonine ("Mrs de Villiers") |
Last 3 values |
---|
Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby) |
Gustafsson, Mr. Karl Gideon |
Dowdell, Miss. Elizabeth |
First 10 values
Value | Count | Frequency (%) | |
---|---|---|---|
Abbing, Mr. Anthony | 1 | 0.1% | |
Abbott, Mr. Rossmore Edward | 1 | 0.1% | |
Abbott, Mrs. Stanton (Rosa Hunt) | 1 | 0.1% | |
Abelson, Mr. Samuel | 1 | 0.1% | |
Abelson, Mrs. Samuel (Hannah Wizosky) | 1 | 0.1% |
Last 10 values
Value | Count | Frequency (%) | |
---|---|---|---|
de Mulder, Mr. Theodore | 1 | 0.1% | |
de Pelsmaeker, Mr. Alfons | 1 | 0.1% | |
del Carlo, Mr. Sebastiano | 1 | 0.1% | |
van Billiard, Mr. Austin Blyler | 1 | 0.1% | |
van Melkebeke, Mr. Philemon | 1 | 0.1% |
Parch
Numeric
Distinct count | 7 |
Unique (%) | 0.8% |
Missing (%) | 0.0% |
Missing (n) | 0 |
Infinite (%) | 0.0% |
Infinite (n) | 0 |
Mean | 0.38159 |
Minimum | 0 |
Maximum | 6 |
Zeros (%) | 76.1% |
Quantile statistics
Minimum | 0 |
5-th percentile | 0 |
Q1 | 0 |
Median | 0 |
Q3 | 0 |
95-th percentile | 2 |
Maximum | 6 |
Range | 6 |
Interquartile range | 0 |
Descriptive statistics
Standard deviation | 0.80606 |
Coef of variation | 2.1123 |
Kurtosis | 9.7781 |
Mean | 0.38159 |
MAD | 0.58074 |
Skewness | 2.7491 |
Sum | 340 |
Variance | 0.64973 |
Memory size | 7.0 KiB |
Value | Count | Frequency (%) | |
---|---|---|---|
0 | 678 | 76.1% | |
1 | 118 | 13.2% | |
2 | 80 | 9.0% | |
5 | 5 | 0.6% | |
3 | 5 | 0.6% | |
4 | 4 | 0.4% | |
6 | 1 | 0.1% |
Minimum 5 values
Value | Count | Frequency (%) | |
---|---|---|---|
0 | 678 | 76.1% | |
1 | 118 | 13.2% | |
2 | 80 | 9.0% | |
3 | 5 | 0.6% | |
4 | 4 | 0.4% |
Maximum 5 values
Value | Count | Frequency (%) | |
---|---|---|---|
2 | 80 | 9.0% | |
3 | 5 | 0.6% | |
4 | 4 | 0.4% | |
5 | 5 | 0.6% | |
6 | 1 | 0.1% |
PassengerId
Numeric
Distinct count | 891 |
Unique (%) | 100.0% |
Missing (%) | 0.0% |
Missing (n) | 0 |
Infinite (%) | 0.0% |
Infinite (n) | 0 |
Mean | 446 |
Minimum | 1 |
Maximum | 891 |
Zeros (%) | 0.0% |
Quantile statistics
Minimum | 1 |
5-th percentile | 45.5 |
Q1 | 223.5 |
Median | 446 |
Q3 | 668.5 |
95-th percentile | 846.5 |
Maximum | 891 |
Range | 890 |
Interquartile range | 445 |
Descriptive statistics
Standard deviation | 257.35 |
Coef of variation | 0.57703 |
Kurtosis | -1.2 |
Mean | 446 |
MAD | 222.75 |
Skewness | 0 |
Sum | 397386 |
Variance | 66231 |
Memory size | 7.0 KiB |
Value | Count | Frequency (%) | |
---|---|---|---|
891 | 1 | 0.1% | |
293 | 1 | 0.1% | |
304 | 1 | 0.1% | |
303 | 1 | 0.1% | |
302 | 1 | 0.1% | |
301 | 1 | 0.1% | |
300 | 1 | 0.1% | |
299 | 1 | 0.1% | |
298 | 1 | 0.1% | |
297 | 1 | 0.1% | |
Other values (881) | 881 | 98.9% |
Minimum 5 values
Value | Count | Frequency (%) | |
---|---|---|---|
1 | 1 | 0.1% | |
2 | 1 | 0.1% | |
3 | 1 | 0.1% | |
4 | 1 | 0.1% | |
5 | 1 | 0.1% |
Maximum 5 values
Value | Count | Frequency (%) | |
---|---|---|---|
887 | 1 | 0.1% | |
888 | 1 | 0.1% | |
889 | 1 | 0.1% | |
890 | 1 | 0.1% | |
891 | 1 | 0.1% |
Pclass
Numeric
Distinct count | 3 |
Unique (%) | 0.3% |
Missing (%) | 0.0% |
Missing (n) | 0 |
Infinite (%) | 0.0% |
Infinite (n) | 0 |
Mean | 2.3086 |
Minimum | 1 |
Maximum | 3 |
Zeros (%) | 0.0% |
Quantile statistics
Minimum | 1 |
5-th percentile | 1 |
Q1 | 2 |
Median | 3 |
Q3 | 3 |
95-th percentile | 3 |
Maximum | 3 |
Range | 2 |
Interquartile range | 1 |
Descriptive statistics
Standard deviation | 0.83607 |
Coef of variation | 0.36215 |
Kurtosis | -1.28 |
Mean | 2.3086 |
MAD | 0.76197 |
Skewness | -0.63055 |
Sum | 2057 |
Variance | 0.69902 |
Memory size | 7.0 KiB |
Value | Count | Frequency (%) | |
---|---|---|---|
3 | 491 | 55.1% | |
1 | 216 | 24.2% | |
2 | 184 | 20.7% |
Minimum 5 values
Value | Count | Frequency (%) | |
---|---|---|---|
1 | 216 | 24.2% | |
2 | 184 | 20.7% | |
3 | 491 | 55.1% |
Maximum 5 values
Value | Count | Frequency (%) | |
---|---|---|---|
1 | 216 | 24.2% | |
2 | 184 | 20.7% | |
3 | 491 | 55.1% |
Sex
Categorical
Distinct count | 2 |
Unique (%) | 0.2% |
Missing (%) | 0.0% |
Missing (n) | 0 |
male | |
female |
Value | Count | Frequency (%) | |
---|---|---|---|
male | 577 | 64.8% | |
female | 314 | 35.2% |
SibSp
Numeric
Distinct count | 7 |
Unique (%) | 0.8% |
Missing (%) | 0.0% |
Missing (n) | 0 |
Infinite (%) | 0.0% |
Infinite (n) | 0 |
Mean | 0.52301 |
Minimum | 0 |
Maximum | 8 |
Zeros (%) | 68.2% |
Quantile statistics
Minimum | 0 |
5-th percentile | 0 |
Q1 | 0 |
Median | 0 |
Q3 | 1 |
95-th percentile | 3 |
Maximum | 8 |
Range | 8 |
Interquartile range | 1 |
Descriptive statistics
Standard deviation | 1.1027 |
Coef of variation | 2.1085 |
Kurtosis | 17.88 |
Mean | 0.52301 |
MAD | 0.71378 |
Skewness | 3.6954 |
Sum | 466 |
Variance | 1.216 |
Memory size | 7.0 KiB |
Value | Count | Frequency (%) | |
---|---|---|---|
0 | 608 | 68.2% | |
1 | 209 | 23.5% | |
2 | 28 | 3.1% | |
4 | 18 | 2.0% | |
3 | 16 | 1.8% | |
8 | 7 | 0.8% | |
5 | 5 | 0.6% |
Minimum 5 values
Value | Count | Frequency (%) | |
---|---|---|---|
0 | 608 | 68.2% | |
1 | 209 | 23.5% | |
2 | 28 | 3.1% | |
3 | 16 | 1.8% | |
4 | 18 | 2.0% |
Maximum 5 values
Value | Count | Frequency (%) | |
---|---|---|---|
2 | 28 | 3.1% | |
3 | 16 | 1.8% | |
4 | 18 | 2.0% | |
5 | 5 | 0.6% | |
8 | 7 | 0.8% |
Survived
Boolean
Distinct count | 2 |
Unique (%) | 0.2% |
Missing (%) | 0.0% |
Missing (n) | 0 |
Mean | 0.38384 |
0 | |
1 |
Value | Count | Frequency (%) | |
---|---|---|---|
0 | 549 | 61.6% | |
1 | 342 | 38.4% |
Ticket
Categorical
Distinct count | 681 |
Unique (%) | 76.4% |
Missing (%) | 0.0% |
Missing (n) | 0 |
347082 | 7 |
1601 | 7 |
CA. 2343 | 7 |
Other values (678) |
Value | Count | Frequency (%) | |
---|---|---|---|
347082 | 7 | 0.8% | |
1601 | 7 | 0.8% | |
CA. 2343 | 7 | 0.8% | |
CA 2144 | 6 | 0.7% | |
347088 | 6 | 0.7% | |
3101295 | 6 | 0.7% | |
S.O.C. 14879 | 5 | 0.6% | |
382652 | 5 | 0.6% | |
349909 | 4 | 0.4% | |
LINE | 4 | 0.4% | |
Other values (671) | 834 | 93.6% |
Correlations
Sample
18.27.1 Want more tricks? Watch 21 more pandas tricks or Read the notebook
© 2019 Data School. All rights reserved.